- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Basrai, Insiya (1)
-
Doron, Lior (1)
-
Lefrancois, Violet (1)
-
Mostofa, Mohammad Golam (1)
-
Sahu, Abira (1)
-
Sharkey, Thomas D (1)
-
Xu, Yuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Isoprene is the most abundant nonmethane biogenic hydrocarbon emitted by some plants, mostly trees. It plays critical roles in atmospheric chemistry by contributing to ozone and aerosol formation. Isoprene also benefits plants, particularly under stress, through its signaling roles. Legume crops like soybean were thought to have evolutionarily lost isoprene synthase (ISPS) and are typically considered nonemitters. Here, we report that damage to soybean leaves by wounding or burning triggered a burst of isoprene emission from the undamaged part of the leaves. In silico analysis identified intactISPSgenes in the soybean genome, with features similar to known ISPSs. Protein made from these gene sequences catalyzed isoprene production in the presence of dimethylallyl diphosphate. Isoprene emission in soybeans was linked to reduced photosynthesis rates and stomatal conductance. Metabolomic analysis showed that leaf damage caused a surge in glyceraldehyde 3-phosphate and pyruvate levels, leading to an increase of most of the methylerythritol 4-phosphate pathway metabolites.more » « lessFree, publicly-accessible full text available June 17, 2026
An official website of the United States government
